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Abstract - In this paper, a novel computer based learning 
framework that bas been developed and applied for the on-line 
control and optimization of transformer core manufacturing 
process is presented. Tbe proposed framework aims at 
predicting core losses of wound core distribution transformers at 
the early stages of transformer construction. Moreover. it is used 
to improve the grouping process of the individual cores by 
reducing iron losses of assembled transformers. Three different 
automatic learning techniques (namely decision trees, artificial 
neural networks and genetic algorithms) are combined and their 
relevant features are exploited. 

fitdm Terns - Decision trees, neural networks, genetic 
algorithms, inieIJigent core lass modeling. 

I. INTRODUCTION 

In today's competitive market environment there is an 
urgent need for the transformer manufacturing industry to 
improve transformer efficiency and to reduce costs, since 
high qualiry, low cost products and processes have become 
the key to survival. Transformer efficiency is improved by 
reducing load and no load (iron) losses. Methods used by 
transformer designers in order to decrease the iron losses tend 
to increase the load losses and vice versa. The decision on the 
best design is based on loading and other specifications of 
each individual transformer. In most cases however, it is 
required that the transformer is designed with minimum iron 
losses [I]. These are particularly important, considering the 
fact that under n o m 1  operating conditions the transformer is 
continuously energized, i.e., 24 hours per day, every day, and 
therefore considerable energy is consumed in the core, while 
load losses occur only when the transformer is on load. Thus, 
iron losses constitute one of the main parameters of 
transformer quality. 

Accurate prediction of transformer iron losses is an 
important task in transformer manufacturing, since it protects 
the manufacturer h m  paying loss penalties. One possible 
method to avoid this risk, is to design the transformer at a 
lower magnetic induction, resulting in an increase of the 
transformer cost since more magnetic material is required [Z]. 
Satisfactory prediction of iron losses can be achieved if 
various parameters involved in the process, both qualitative 

and quantitative, are taken into consideration. In the current 
practice the calculations are based on graphs (e.g., the loss 
curve) and tables obtained fiom past measmments on actual 
transformers. This is dictated by the fact that there is no 
analytical relationship expressing the effect of the various 
parameters on transformer iron losses. Concerning the loss 
curve for example, only the influence of the rated magnetic 
induction on iron losses for each specific magnetic material is 
considered. 

For these reasons, iron loss prediction during design of 
tramformers with stacked cores has been investigated in 
[3,4]. More specifically, in [3] the effects of a number of core 
production attributes on transformer core loss performance 
have been investigated. In [4] spatial distribution components 
and total core losses are calculated using a generic 2D t i d e  
difference method. 

This paper deals with iron loss reduction of wound core 
distribution transformers. The origin of our work is the 
effective use of measurements taken at the first stages of 
transformer construction, in order to minimize iron losses of 
transformer (final product), while previous works were 
concentrated on the more accurate calculation of transformer 
iron losses during its design phase. The measurements taken 
at the fvst stages of core construction are collected and stored 
in databases. Each database corresponds to different 
conditions (environment), i.e. to a certain supplier, grade and 
thickness of magnetic material. When a satisfactory number 
of measurements has been collected, automatic learning is 
used in order to extract the information included in the 
databases [ 5 ] .  More specifically, decision trees @Ts) [6,7] 
are used to select the most relevant attributes among a large 
set of candidate ones and to produce "if-then-else" decision 
rules. These rules are applicable at the early stages of core 
production, and allow possible corrective actions during the 
manufacturing process. 

Neural networks ("s) [8] as well as a hybrid decision 
tree-neural network approach [9,10] are used to predict iron 
losses at the early stages of transformer manda&ng. Each 
of neural networks is suited to a different environment. 
Selection of the most appropriate network (or equivalently 
environment) is based on the satisfaction of customers' 
requirements and several technical and economical criteria 
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[ 111. The attributes selected by the decision trees are used as 
inputs to the neural networks. 

The intelligent core loss model (i.e., the model of iron 
losses obtained through the neural network) is applied on-line 
to optimally combme the individual cores, in order to reduce 
the iron losses of assembled transformers. Unfortunately, for 
any practical number of cores, the complexity of an 
exhaustive search for their optimum grouping is such that a 
direct implementation would be practically unfeasible. For 
this reason, a genetic algorithm (GA) approach [12] is 
adopted in this paper. 

In conclusion, in this paper an efficient computer-based 
environment is presented, providing on-line control of 
transformer core manufacturing process. The computer 
environment consists of data acquisition systems, automatic 
learning soffware, and statistical processing and graphical 
visualization toolbox. Results &om the application of the 
proposed techniques on a transformer industry demonstrate 
the feasibility and practicality of this approach. Significant 
reduction of transformer iron losses is observed in 
comparison to the current practice. 

11. OVERVlEW OF DECISION l k 3 . S  

The Decision Tree methodology [I31 is a non-parametric 
learning technique able to produce classifiers about a given 
problem in order to reduce information for new, unobserved 
cases. The DT is a tree structured upside down, built on the 
basis of a Learning Set (LS). The LS comprises a number of 
preclassified measurement sets (MS) defined by a list of 
candidate attributes. 

The conshvction of a DT starts at the root node with the 
whole MS of the LS. These MS are analyzed in order to 
select the test that splits them "optimally" into a number of 
most "purified" subsets, which correspond to the successor 
nodes. For the sake of simplicity, a 2-class partition is 
considered in the following analysis, i.e. each MS is 
characterized as acceptable or as non-acceptable. The 
selection of the optimal test is based on maximizing the 
additional information gained through that test. A measure of 
the information provided by a test is based on the entropy of 
the examined subset. This procedure, known as the optimal 
splitting rule, is applied recursively to each new node, to 
build the corresponding subtrees. 

In the following, the basic terms involved in the tree- 
building procedure are introduced and the algorithm is 
explained in detail. 

Each node possesses a subset of MS with the following 
characteristics: 

E.: the MS subset of node n of the DT. 
M size (number of MS) of E, 
SA: number of acceptable MS in E,. 
nNA: number of non-acceptable MS in E,. 

The relative fiequencies of acceptable (fA) and non- 
acceptable MS for node n will be: 

n n 
nA + nNA N ' 

fA = A = L  

The entropy of E. with respect to the class partition of its 

(2) 
H,(EJ is a measme of the class-purity of the node subset 

E, and, consequently, of the uncertainty of the classification 
of a state by this node. The following relations hold for 

elements, is defined as: 
Hc (E") = -UA log2 f A  + f N A  log2 f N A ) .  

Hc(Ed: 
05 Hc(En) s 1, (3a) 

H,(E,)=lO f A =  fNA=0.5. (3c) 

T : A i < t ,  (4) 

H c ( E , ) = O a ( f A = l  or f N A = l ) ,  (3b) 

A test Tis defined at node n as: 

where A, is the value of attribute i of a particular MS and tis a 
threshold value. 

By applying the test T to all MS of node n, E, is split into 
two subsets E., and Ed: 
Enl = { M S s E n  : A ,  S t } ,  (sa) 
E,* ={MY€ En : A ,  ' t } .  (5b) 

If n, is the number of MS in E,, with P1,2 then the 
corresponding frequencies are given by: 

n. n. 

f2=--L=l.  n n (6b) 

The entropy of En with respect to the partition induced by T 
is: 

(7) 
where HdEJ is a measure of the uncertainty of the outcome 
of test T. 

The mean conditional entropy of En+ given the outcome of 
test, corresponds to the residual entropy &er the application 
of T and is defined as: 
H,(E, I T )  = f,HJE",) + f2H,(E",) * (8) 

The information gained &om the application of test T is 
expressed by the achieved reduction of the learning subset 
entropy: 

n, +n2 N 

H,(E,) = -tr; log2 r; + fi log, f,) > 

4 E - 3 9  = H,(EJ - Hc(En I T I .  (9) 
A more objective (less biased) estimator of the merit of test 

Tis provided by the normalized information gain, defined as: 
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For each node of the DT, the optimal splitting rule consists 
of selecting the test which minimizes the classification 
uncertainty, i.e. the one with the highest information gain 
C(E,,;T). The best test is obtained by sequential testing of all 
amibutes and candidate thresholds and comparing their 
information gain. 

In order to detect whether the calculated information gain 
for each test reflects an actual increase in information fiom 
the application of test T to unforeseen MS or it is simply 
apparent (i.e. a random effect, due to the limited size of the 
sample), a suitable statistical hypothesis test is used [5]. More 
specifically, under the hypothesis of no correlation between 
the test T and the class partition in the Universe U of the MS 
(resp. U"), that is for zero actual increase in information, the 
random variable N*/(E*..T), which is an estimator of the total 
actual intormation gain, is 2-distributed with 1 degree of 
fieedom and its expected value is positive and inversely 
proportional to the size of the subset &: 
N * P ( E ~ ; T ) - X * ( ~ ) .  (11) 

If a is the risk level of not detecting situations of only 
apparent infomtion gain and X, the value such that 
P(X > X,) = a ,  where X a  random variable following an Xz 
distribution with 1 &gee of fkedom, then the following 
statistical test can be formulated "The node splitting test T is 
rejected as uncorrelated with the class partition if 
QI=N*I(E,;T)<&", where N is the number of learning states 
inE,. 

In order to detect if a node is terminal, i.e. suffciently 
"class-pure", the stop splitting rule is used, which compares 
the classification entropy of the node with a minimum preset 
value H,,, If it is lower than H,,, then the node is 
sufficiently class-pure and it is not M e r  split. Such nodes 
are labeled LEAVES: 
r f  H,(E*)< H,, 3 LEAF. (12) 

Otherwise (if Hc(EJ2H,,), a suitable test is sought to 
divide the node, by applying the optimal splitting rule. In the 
case that no test can be found with a statistically significant 
information gain, the node is declared a DEADEND and it is 
not split. 

The steps followed by the tree-building algorithm are 
summarized in the following: 
1. The procedure sfarts fiom the top node with the whole LS. 
2. It is examined if the node should be better split by 

applying the stop splitting rule: - 
- If not proceed to Step 3. 

3. Selection of the optimal test (optimal splitting rule). 
4. Statistical significance testing of the optimal test. 

- If the measured information gain is statistically 
significant 3 Test Node. Proceed to Step 5. 

Ifthe node subset is sufficiently class-pure =) LEAF 

- If there is no statistically significant way to expand the 
node =$ DEADEND. 

5. Two successor nodes are created, using the optimal 

6. Steps 2 i5  are recursively applied to the successor nodes. 
DTs are tested using test sets (TS), comprising a number of 

similar, preclassified, but independent MS. The class of each 
of these MS is compared to the class of the terminal node 
snally led to by applying the tests of the various non-terminal 
nodes. This comparison provides the DT classification error 
rate (CJ. 

splitting test. 

111. FROM DECISION TREES TO NEURAL NETWORKS 

A binary DT induces a hierarchical partitioning over the 
decision space. Starting with the root node, each internal 
(test) node partitions its associated decision region into two 
half spaces. It is obvious that all the conditions along any 
particular path from the root to the terminal node of the DT 
must be satisfied in order to reach the particular terminal 
node. Thus, each path of a DT implements an AND 
operation on a set of half spaces. If two or more terminal 
nodes result in the same class, then the corresponding paths 
are in an OR relationship. 

Multi layer perceptrons are feedfomd neural networks 
consisting of one input layer, one or more hidden layers and 
one output layer. A MLP with two hidden layers used for 
classification performs the following functions. The first 
hidden layer is the partitioning layer that divides the entire 
feature space into several regions. The second hidden layer is 
the W i g  layer that performs ANDiig of partitioned 
regions to yield convex decision regions for each class. The 
output layer is the ORing layer that combines the results of 
the previous layer to produce disjoint regions of arbitrary 
shape. 

It is concluded from the above that a DT and a four-layer 
perceptron are equivalent in terms of input-output mapping. 
In addition, a DT can be reformulated as a neural network, 
called entropy network (EN), by following the rules proposed 
in [9]: 

a. The Input Layer (U) consists of one neuron per 
attribute selected and tested by the DT. 

b. The in hidden layer called Partitioning or Tesf Lqver 
(TL) consists of one neuron per DT test node. 

c. The ZMd hidden layer called ANDing Layer (At) 
consists of one neuron per DT terminal node. 

d. The output layer or ORing Layer (OL) consists of one 
neuron per DT class. 

The connections between the neurons of the above four 
layers implement the hierarchy of the DT. In particular, each 
neuron of the TL is connected to the neuron of the IL 
corresponding to the tested attribute. In addition, each neuron 
of the AL is l i e d  to the neurons of TL corresponding to the 
test nodes located on the path from the top node towards the 
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terminal node. Finally, each neuron of the output layer is 
connected to the neurons of AL corresponding to the DT 
terminal nodes. In comparison to the standard MLPs that are 
hlly connected, the entropy network has fewer connections, 
or equivalently less number of parameters, reducing the time 
needed for training. 

The entropy network can be used for classification, with 
some modifications however it can be also used for prediction 
[ l o ] .  In this case the OL is replaced by a single output 
neuron, fully connected to all neurons of the AL and the 
resulted network is retrained. This methodology is called 
hybrid DT - NN (HDTNN) approach. After HDTNN 
convergence, the network is used to predict the test states and 
after that to classify them accordingly, providing the so-called 
hybrid DT - NN classifier (HDTNNC). 

Iv. OVERVIEW OF GENETIC ALGOWHMS 

GA is a robust optimization method that works above a set 
of candidate solutions named population and performs a 
number of operations based on genetics. 

An initial population of k chromosomes X(O)=(x,, ..., xi) is 
randomly generated. The initial population x(0) is used for 
the creation of new generation populations X(n), WO. The 
creation of X(n) at generation (or GA cycle) n is performed 
by applying a set of operations on population X(n-l), 
described below. This procedure is repeated in an iterative 
way, until X(n) converges to an optimal solution of the 
problem. 

For the transformer iron loss minimization problem, the 
total predicted iron losses P, of the WZ transformers are used 
as an objective function to estimate the performance of all 
chromosomes xi ,  i=l, ..., k in a given population. However, a 
fitness firnetion is used to map objective values to fimess 
values, following a linear normalization scheme. In 
particular, chromosomes x, are ranked in ascending order of 
P,(xi), since the objective function is to be minimized. Let 
r(x,)~{l,  ..., k} be the rank of chromosome x,, +l,..., k. 
Defining an arbitrary fimess value FB for the best 
chromosome, the fimess of the i-th chromosome is given by 
the linear function: 
F ( x , ) = F , - [ r ( ~ ~ ) - l l D ,  i = l ,  ..., k ,  (13 )  
where D is a decrement rate. Thus, the average objective 
value of the population is mapped into the average fimess 
[14].  After fimess values, F(xi). el, ..., k, have been 
calculated for all members of the current population, parenf 
selection is then applied so that a fitter chromosome gives a 
higher number of offspring and thus has a higher chance of 
survival in the next generation. A proportionate scheme, 
implemented by the rouleffe wheel selection procedure [lS], 
is used for parent selection, ensuring that each chromosome 
has a growth rate proportional to its fimess value. 

A set of new chromosomes (offspring) is then produced by 
mating the selected parent chromosomes and applying a 

crossover operator. The genetic material of the parents is 
combined in a random way in order to produce the genetic 
material of offspring. Mutation is then applied to the newly 
created chromosomes, introducing random gene variations 
that are useful for restoring lost magnetic material, or for 
producing new material that corresponds to new search areas. 
A small mutation probability ensures that only a small gene 
proportion is altered in each generation. 

Once new chromosomes have been generated for a given 
population X(n), the next generation population, X(n+l), is 
formed by inserting those new chromosomes into X(n) and 
deleting an appropriate number of older chromosomes, so that 
each population consists of k members. The exact number, C, 
of old chromosomes to be replaced by new ones defines the 
replacement sfrafegv of the GA and greatly affects its 
convergence rate. All of the above description refers to 
simple GA cycle. Several cycles need to take place, that is, 
several generations X(n) need to be produced until the 
population converges to an optimal solution. For this reason, 
the procedures of fimess evaluation, parent selection, 
crossover and mutation are repeated until a termination 
criterion is satisfied. Usually the GA terminates when the best 
cbromosome fimess remains constant for a large number of 
generations, indicating that further optimization is unlikely. 

V. AUTOMATIC LEARNING ” N I Q U E S  AND 
TRANSFORMER CORE LOSSES 

A. Problem Description 

Fig. 1 shows the assembled active part of a wound core 
distribution transformer. It can be seen that two small 
individual cores (width of core window equal to F1) and two 
large individual cores (width of core window equal to F2) 
need to be assembled. In general, the width F2 is twice that of 
F1. 

As it is observed from Fig. 1 the four cores are arranged in 
space as (fiom left to right): a small core, followed by a large, 
followed by another large and finally followed by a small one. 
Let us denote as “1 1” and “12” the left small and large core 
respectively, while as “13” and “14” the other two cores. 
Thus, the core arrangement fiom left to right will be “11”-  
“12”-“13”-“14’: as depicted in Fig, 1 .  

Typically, transformer iron losses depend upon the grade 
of steel, its thickness, current frequency, magnetic flux 
density and weight. These factors are taken into account 
during the transformer design stage. A number of additional 
factors affect iron losses during manufacturing, such as the 
kind of lamination insulation, mealing, core construction, 
quality of assembly, etc. However, it is not possible to 
consider all these factors analytically and, therefore, the 
calculations are based on graphs and tables obtained fiom 
past measurements on actual transformers. The basic data 
taken &om these tables are updated by coefficients that 
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Fig. 1, Assembled active part of wound core distribution 
transformer. 

account for the specific features of the magnetic core design 
and technology of core production. 

Indicative loss curves traditionally used to estimate iron 
losses of individual cores and of assembled transformers are 
shown in Fig. 2. Using these loss curves, only the influence of 
the rated magnetic induction on iron losses for each specific 
magnetic material is considered. 

It should be noted that during transformer construction 
actual weights and losses of individual cores diverge ffom the 
theoretical ones. Although these deviations are within 
predictable statistical l i t s ,  they cause variations in the iron 
losses of assembled transformers. 

The conventional technique used to reduce the variation in 
iron losses of assembled transformers is to pre-measure and 
assign a grade (quality category) to each individual core and 
then combine higher and lower graded individual cores to 
achieve an "average" value for the entire transformer. This is 
referred to as conventional grouping process. 

In our method, automatic learning techniques are applied in 
order to obtain an iron loss prediction model. The intelligent 
model is used on-lme, aiming at the minimization of iron 
losses of assembled transformers. 

B. Representation 

The representation is the first step in the application of 
automatic learning to a given practical problem [5 ] .  It consists 
of (a) choosing appropriate input attributes to represent the 
problem, @) defining the output information, and (c) 
choosing the suitable model to represent input/output 
relationships, 

For the transformer iron loss problem, a large set of 
candidate attributes is initially chosen. The attributes, i.e. the 
parameters affecting transformer iron losses, have been 
selected based on extensive research and transformer 
designers' experience. These attributes are calculated as a 
combination between measurements taken during the fust 

Fig. 2. Typical loss curve 

stages of core production and values theoretically evaluated 
during the transformer design phase. To define the selected 
attributes, a brief presentation of the involved parameters is 
follows. 

The transformer designer calculates the following 
parameters: 
DWPK, : Theoretical specific iron losses (WKg) of the 

DWPKp : Theoretical specific iron losses (WKg) of the 

DKg, : Theoretical weight of the i-th core. 
The transformer designer uses the loss curve in order to 

calculate the theoretical specific iron losses of the individual 
core and of the assembled transformer. Each loss curve 
corresponds to a specific supplier, grade and thickness of 
magnetic material. 

The theoretical iron losses, say DWL,, of the i-th core are 
given by: 

i-th individual core, i="I l", ... ,"14". 

assembled transformer. 

DSFLi = DWPKi * DKgi, i 2'1 1" ,..., '14" . (14) 

The theoretical total iron losses of the four individual cores 

(15) 
The theoretical weight of the transformer is equal to the 

(16) 
The theoretical iron losses of the assembled transformer are 

of the transformer are: 
DSFL, = DSFL.,,. + DSFL.,,, + DSFL.,,. +DSFL.,,. . 

sum of the theoretical weights of its four individual cores: 
DKg,, = DKg,,,. + DKgnI2. + DKgD13" + D k , , .  . 
calculated as follows: 
DNLL,, = DWPKTF * DKgF.  (17) 

After the production and quality control of individual cores 

: Specific iron losses (WKg at 15000 Gauss) of 
magnetic material of the i-th core. 

: Specific iron losses (WKg at 17000 Gauss) of 
magnetic material of the i-th core. 

: Actual weight of the i-th core. 
: Actual iron losses of the i-th core. 

the following parameters are known kom measurements: 
WPK,,,,,, 

WPK,,,,,, 

AKg, 
ASFL, 

individual cores are: 
The actual total iron losses, say ASFLTF, of the four 
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ASFLTF = ASFL,,,,. + ASFLl,. + ASFA,,. + ASFL.14,. (18) 

=Al(g"l,g.,, , ,+AKg.l,.+A~.,,.+Al(g.,, . .  (19) 
The actual weight, say AKgTF, of the transformer is: 

The actual specific iron losses of the i-th individual core 
are. sav A WPKA are given bv: 

Table I shows the candidate attributes, idtialIy chosen. AS 
output information, the transformer specific iron losses (i.e., 
iron losses per weight unit) are selected. The learning sets are 
composed of sets of inputroutput pairs corresponding to all 
possible transformer constructions. Each of the learning sets 
is suited to a different condition (environment), i.e. to a 
certain supplier, grade and thickness of magnetic material. In 
the foliowin& three different environments are considered, 
each defined in Table 11. For example, the environment #1 is 
characterized by magnetic material of grade M3, according to 
USA AIS1 1983, thickness 0.23 mm, while the supplier of 
material was SUP-A (Supplier A). 

The fmal step in the represenlofion of the transformer iron 
losses consists of the choice of an appropriate model (or 
models). The selection is based on trial and error. In the 
following, decision trees, neural networks, and combined use 
of decision trees and neural networks are examined and 
compared. 

TABLE I 
I N ~ U L Y  S E L E ~ U  C m r n A m  A m m  

Symbol Expression 
ATTRl Rated magnetic induction 
ATTRz ( W P K ~ i i ~ , ~ . + W P K ~ i ~ . ~ , ~ ~ + W P K ~ i ~ ~ , ~ ~ + W P K ~ ~ r ~ , ~ ~ ~ 4  
ATTR, O V ~ K ~ I I : ~ ~ S + W P K " I ~ " , ~ ~ + ~ K " I ~ " ~ ~ + ~ K " I ~ " ~ ~ ~ ~  
A m  AKgdDKgm 

ATfR t i 

Enviroment 
Characteristic # I  #2 #3 
Supplier 

VI. APPLICATION OF DECISION TREES 

Decision trees are applied for attribute selection as well as 
for classification of specific iron losses into acceptable or 
non-acceptable. 

A. Iron Loss Clmsijkotion 

The criterion for classifying transformer iron losses as non- 
acceptable is based on the comparison of the actual specific 
iron losses to the theoretical expected (designed) specific iron 
losses. 

In Fig. 3 a characteristic decision tree is illustrated, 
developed with the 19-attribute list (ATTRI + ATTRI~  of 
Table I) and 0.999 confidence level. The DT is constructed 
kom the 1590 MS of the learning set of the environment #2. 
Its classification error rate, tested with the 760 MS of the test 
set, is 4.2%. 

Fig. 3. DT developed using the 19-attribute set. 
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The notation used for the DT nodes is explained in Fig. 4. 
The acceptability index of a node is defmed as the ratio of the 
acceptable MS in the subset E. of node n to the total number 
of MS in E,,. For example, among the 1590 MS of node 1, the 
1498 MS (94.21%, i.e. acceptability index of 0.9421) are 
acceptable, while the rest 92 are non-acceptable. 

The terminal nodes correspond to a class label (acceptable 
or non-acceptable) that can be used to classify any 
measurement set, either belonging to the learning set or 
completely new one. The class of a terminal node is assigned, 
using its acceptability index. For example, since node 4 has 
an acceptability index of 0.9968, then the MS "fallig" to this 
node have a 99.68% probability of being acceptable. 

The DT of Fig. 3 consists of 6 test and 7 terminal nodes, 
and has automatically selected only 6 attributes among the 19 
candidate ones of Table I. These attributes in decreasing 
order of significance are ATTR2, ATTR$, ATTRZ, ATTRj6, 
ATTR,5 and ATTR14. ATTR, corresponds to the average 
specific iron losses of magnetic material of the four individual 
cores, ATTRf is the ratio of actual over theoretical total iron 
losses of the four individual cores, and ATTh represents the 
ratio of actual over theoretical weight of the four individual 
cores. ATTRI6 is the ratio of actual over theoretical sum of 
iron losses of individual cores "13" and "14". Finally, 
ATTR15 and ATTR14 are detined in the same way as ATTRI6, 
but they correspond to the sum of iron losses of cores "12" 
and "13", and "11" and "172, respectively. The selection of 
these attributes is reasonable and expected, since they are all 
important to the transformer iron losses. 

Each terminal node produces one decision rule, on the 
basis of its acceptability index. For example, fiom terminal 
node 6 the following rule is derived: ifAZTR,sD.6934 and 
AVR5>I.0693 and AlTR16SI.0552, then tramformer 
specific iron losses are of acceptable quality. Consequently, 
based on the decision tree of Fig. 3, rules useful for the core 
production can be derived. 

If is desirable to construct transformers leading to nodes 4, 
6, and 12, if it technically and economically feasible. These 
nodes have acceptability indices greater than 98%. On the 
other hand, constmction of transformers with MS "falling" to 
nodes 7, 8, 11, and 13 must be avoided, since these nodes 
correspond to non-acceptable quality. 

The measurement sets following the rule AZTR2>0.6934 
and A7TR4g.9915 are lead to node 8, and characterized as 
non-acceptable. In order to avoid this, one way is not to 
permit ATT% to be lower than or equal 0.9915. The method 
is to produce cores with actual weight not smaller than 0.85% 
in relation with their theoretical weight. 

The measurement sets following the rule AlTR1G.6934 
and ATTRJSII. 0693 are lead to node 4, and characterized as 
acceptable. Assuming that the quality of the magnetic 
material used for core construction satisfies the test 
AlTR2G.6934, then in order to lead to node 4 we must keep 
AlTRJSl.0693. This is equivalent to take care that the sum of 

the actual iron losses of the four individual cores not to be 
greater than 6.93% in relation with the sum of their 
theoretical iron losses. 

B. Feature Selection 

Feature selection aims at reducing the dimensionality of 
the input space by dismissing attributes, which do not carry 
useful information to predict transformer iron losses. 

The task of deciding which of the candidate attributes are 
the most important is an arduous task. The DT technique 
provides not only attribute selection, but also attribute 
ranking in the sense that it assigns an information quantity to 
each attribute [51. 

Given a transformer acceptability criterion (i.e., type and 
threshold value), a DT is built to classify samples and to 
automatically identify attributes relevant for classification, 
with respect to this particular criterion. 

Two different acceptability criteria are used for the 
classification of iron losses. According to the fist criterion, 
one transformer is acceptable, if its actual specific imn losses 
are not greater than LimI% of the theoretical specific iron 
losses (given by the loss curve). According to the second, one 
transformer is acceptable, if its actual specific iron losses are 
in the range f Lim2% of the theoretical losses. Parameters 
LimI% and LimZ% (i.e., threshold values of the transformer 
acceptability criteria) are defined by the transformer designer 
in accordance with customer requirements. The above 
acceptability criteria correspond to alternative customer 
requirements. 

Several DTs were built for various scenarios: two different 
suppliers of magnetic material, three different gades of 
magnetic material, two acceptability criteria, and 10 different 
values for parameters Liml% and LimZ%. The DTs were 
evaluated on the basis of independent test sets. In our 
investigation only DTs with high acceptability success rates 
(more than 90%) are taken into consideration. Table 111 
shows the 8 attributes that appear in the test nodes of the 
resulting decision trees, i.e. automatically selected among the 
19 candidate attributes of Table I. The quantitative 
improvements achieved through the attribute selection 
process are proved by the reduction of the average absolute 
relative error in the prediction of iron losses and are 
described in the following sections. 

TABLE III 
L I S T O F T H E M O S T S I A N T  ATTRIBUTES 

Symbol Expression 
11 Rated magnetic induction 
I2 W K v  I ~ . M I I + W P K ~ I I ~ , , L ~ + W P K ~ ~ ~ , - + W P K ~ I ~ ~ , ~ ~ Y ~  
13 O N P K " I I . : ~ ~ + W P K . . I ~ , ~ ~ + W P K " I ~ ~ L ~ + W P K " ~ ~ , ~ ~ ) I ~  
14 AKgrPlDKgn 
I5 A S b / D S F h  
b [ A W P K " I I . + A W P ~ , I ~ ) / ~ W P K . ~ , ~ D ~ K " , ~ " )  
I7 (AWPK"in-+AWPK-ir)WPK.iI.+DWPK-ls.) 
IS (AWPK"II-cAWPK,,i,")l~WPK,,~,-+DWP~,,~~) 
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VII. APPLICATTON OFNEURAL NETWORKS 

In this section results from the application of different NN 
structures for classifying and predicting transformer specific 
iron losses are presented. Prediction aims at estimating the 
actual specific iron losses, while classification at categorizing 
the iron losses into acceptable or non-acceptable. 

DT 
EN 
DT 

A. Classification Problem 

For the classification problem several neural network 
architectures are tested and compared. More specifically, the 
fully connected MLP is compared with the entropy network 
that has fewer connections. Moreover, architectures with one 
or two hidden layers, with one or two output neurons, and 
with a variable number of input neurons are tested. 

Based on the decision tree of Fig. 3 and the methodology 
described in Section III, the EN of Fig. 5 can be derived. The 
EN is composed of 6 input, 6 test, 7 ANDing and 2 ORing 
(output) neurons. The output information is a two-class 
classification, Le., acceptable (A) and non-acceptable (NA) 
transformers with respect to the DT acceptability criterion 
considered. The correspondence between the DT nodes and 
the EN neurons is described in Table IV. 

After adaptation of its weights, the EN provides a 
classification error rate, C., of 3.4%. Furthermore, the output 
layer of the EN is replaced by a single neuron representing 
transformer specific iron losses and the HDTNN approach is 
applied. After traidng and convergence, the NN is used to 
predict the transformer specific iron losses of the TS and 
classify them accordingly to the criterion used for DT 
building. The WTNNC significantly decreases the C. to 

1 2  3 4 5 6 7 

8 9 10 I I  12 13 
T L I  TL, TLI A L I  n4 ALZ A L 3  

E N A L 4 T L r T L a A L s A Z a A L 7  

Input l'liidden 2' Hidden Output 
Layer Layer Layer Layer 

Fig. 5. Entropy network for the DT of Fig. 3 ,  

TABLE IV. CORRESPONDENCE BETWEEN DT NODES AM) EN NEURONS 

6-67-2 3.4 
6-6-7-1 2.2 

MLP(19amibutes) 19-5-2 1.4 
MLP (6 DT attributes) 69-2 3.2 

Moreover, two fully connected MLPs were constructed for 
the same classification problem. The first MLP comprises 19 
input neurons corresponding to the candidate attributes of 
Table I, while the second comprises the 6 attributes selected 
by the decision tree of Fig. 3. Both MLPs have only one 
single hidden layer and two output neurons corresponding to 
the acceptable and non-acceptable transformers. The first 
MLP comprises 5 hidden neurons, i.e. a 19-5-2 structure, and 
presents a C. of 1.4%. The second MLP has a 6-9-2 structure 
and a 3.2% classification error rate. 

Table V summarizes the results of classification of 
transformer iron losses. The EN, which is derived by 
translating the decision tree structure and the second MLP 
with the 6 attributes identified by the tree, provide very 
similar classification results. The HDTNNC is more accurate 
than the EN and the second MLP. The first MLP with the 19 
attributes provides the best classification results. Concerning 
training computational performance, decision trees are by far 
the fastest method, while among the different neural network 
approaches the slowest method corresponds to the fully 
connected MLP. 

B. Prediction Problem 

In order to predict transformer iron losses, multilayer 
feedforward neural networks with one output (i.e., 
transformer specific iron losses) an? used. In all cases 
examined, the fully connected MLP is adopted. The 
activation functions of all neurons are the sigmoid function. 

The Average Absolute Relative Error (AARE), used to 
evaluate the network performance, is defined as: 

Initially a fully connected MLP with the same number of 
neurons per layer (i.e., 6-6-7-1) With the EN of Fig. 5 is used. 
The trained MLP presents an AARE of 2.7%. Similar results 
are obtained with other tested MLPs with two hidden layers. 
On the other hand, in case of one hidden layer the results are 
better. The best number of neurons of the hidden layer is 
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TABLE VI. COMpARDiO THE PERFORMANCE 
OF DEFEREM NEURAL NETWORK STRUCTURES 

SbucNre AARE(%) 
6-6-7-1 2.7 
19-5-1 1.8 
6-5-1 1.9 
8-5-1 1.7 

Environment 
Method U1 U2 #3 
Losscurve 2.9 3.1 3.3 
MLP(8-5-1) 1.5 1.7 1.8 

selected by trial and error, for the given environment. In 
particular, for the #2 environment, one hidden layer 
consisting of a small number of neurons (5 neurons) is found 
to be completely adequate. 

In addition to the 6-6-7-1 MLP, the prediction performance 
of three different MLPs with one hidden layer and one with 
two bidden layers is presented in Table VI. The MLPs 
correspond to the #2 environment. In case of one hidden 
layer, the number of input neurons is selected to be 19 
(corresponding to the attributes of Table I), or 8 
(corresponding to the attributes of Table III), or 6 (i.e., the 
attributes selected by the DT of Fig. 3). The hest results are 
obtained if the 8-5-1 MLP structure is followed. Similar 
results are obtained for the other environments. This result 
shows the advantages of the attribute selection process using 
decision trees. 

Moreover, the performance of the 8-5-1 MLP structure is 
compared with that obtained by the current practice of using 
the typical loss curve. Table VI1 presents the average absolute 
relative error on test set, for the three environments 
considered, following the current practice (loss curve) as well 
as the proposed method (neural network). In all cases, the 
neural network method provides an improved accuracy by 
more than 45%. 

VIII. APPLICATION OF GENETIC ALGORITHMS 

A.  Genetic Algorithm for Iron Loss Reduciion 

The intelligent core loss model is exploited on-line in order 
to reduce iron losses of assembled transformers. More 
specifically, the accurate prediction of iron losses, provided 
by the neural networks, is used to improve the grouping 
process. Thus, assuming that an even number of L small cores 
and L large cores is available, then U2 transformers can he 
assembled. Each transformer has four positions where cores 
can be placed. The two outer positions are occupied by small 
cores while the other two middle positions are occupied by 

large cores (Fig. 1). Each small core can be put to any of the 
two positions and to any of the L/2 transformers. The same 
assumption exists for each large core. From all possible 
combinations of grouping L/2 transformers, only one 
combination, providing the optimum iron loss performance, 
should be selected. 

The neural networks can be used in order to minimize 
(reduce) transformer iron losses, as follows: 
a) An initial arrangement of U2 transformers is generated by 

randomly selecting the position of L small and L large 
cores. For each of the L/2 transformers the neural network 
inputs (attributes) are calculated. Using the neural network 
weights and thresholds the network output (i.e., the 
specific iron losses) is estimated, for each of the U2 
transformers. After that, the iron losses of each 
transformer are predicted by multiplying the neural 
network output with the respective actual transformer 
weight. Next, the total predicted iron losses, say P,, of the 
U2 transformers are evaluated by adding their predicted 
iron losses. Finally, the arrangement of cores for all the 
U2 transformers together with the total predicted iron 
losses, P,, are stored in a solution table. 

b) Step a) is repeated for all the different combinations of the 
U2 transformers. 

c) From the solution table, the Combination having the 
smaller total predicted iron loss, P,, is selected. For the 
selected solution, the arrangement of cores, for all the U2 
transformers, is retrieved. This is the solution of the 
optimization problem. 

The effectiveness of this optimization process is strongly 
reduced, as the number of individual cores increases. For 
example for L=6, the combinations of grouping the U2 
transformers are 1800, while for L=48 the combinations are 
approximately 4*10’’. For this reason a genetic algorithm 
approach is adopted for the grouping task. Fig. 6 shows the 
representation scheme for the arrangement of cores in a 
transformer. According to this scheme, integer numbers are 
used for the representation of genes (cores). For example, 
assuming that 6 small cores and 6 large cores are going to be 
grouped (Fig. 6), then the integer numbers between 1 and 6 

Small “11” “12” Y3* “14” 
Caes $ 4  

L w e  
Caes 

Fig. 6. Representing the arrangement of cores in a 
transformer. 
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Fig. 7. Example of the two-point crossover operator. 

correspond to the small cores, while the consecutive numbers 
between 7 and 12 represent the large cores. Four genes are 
used in order to represent the arrangement of cores in one 
transformer. If the small cores 1 and 4, and the large cores 9 
and 10 are selected for the first of the 3 transformers, then 
one possible arrangement of cores, from left to right, is core 1 
is followed by core 9, followed by core 10, and followed by 
core 5.  Then, the string { 1,9,10,5} represents the arrangement 
of cores of the first transformer. The arrangement of cores for 
the second and the third transformer are generated 
accordingly. Joining the 3 strings produces the chromosome, 
i.e. one possible solution of the optimization problem. In 
general, one chromosome contains 2*L genes. 

An initial population of k chromosomes X(O)=(x,, ..., xa) is 
generated by selecting sets of arrangements whose genes 
correspond to “average” iron losses, according to the 
conventional grouping process. Traditionally, initial 
populations are randomly generated, but the above approach 
increases the possibility of locating sets of arrangements with 
low losses within the first few GA cycles. 

Fig. 7 depicts an example of the crossover operator with 
two crossover points used for exchanging genes. 

B. Experimental Results 

The proposed genetic algorithm based grouping process 
was used in order to group 100 small and 100 large cores of 
the same production batch of 50 transformers, 160 kVA, 50 
Hz. 

305 ‘v 

0 10 20 30 40 SO 

Fig. 9. Evaluating the performance of the genetic algorithm. 

Fig. 8 shows the minimum value, over the whole 
population, of the objective function (or total predicted iron 
losses Pix,)) versus the cycle (or generation) of the genetic 
algorithm. P&,) decreases as the GA cycle increases, until it 
reaches a minimum value of 15664 W at generation 85. S i c e  
in the specific experiment half chromosomes are replaced by 
new ones at each generation (k=80 and Gk/2=40 have been 
used), there are cases where all generated offspring have 
lower fitness than their parents. In these cases the value of the 
P&,) remains at the same level, hence the “stepwise” 
appearance of the curve in Fig. 8. Note that the step “width” 
increases with the GA cycle, since it is directly related to the 
probability of further optimization. 

The output of the genetic algorithm based grouping process 
is not only the minimum value of the total predicted iron 
losses (i.e., PXx,)=15664 W for the example of Fig. 8) of the 
U2 transformers. It also provides for each one of the U2 
transformers: (a) the arrangement of the four cores and @) the 
predicted iron losses. 

Fig. 9 evaluates the performance of the genetic algorithm 
comparing the predicted to the actual iron losses (measured 
after transformer construction) for each one of the 50 
transformers, for the example of Fig. 8. For the specific 
example, the AARE is 0.57%. The proposed grouping process 
is tested for all the environments in various production 
batches providing an AARE, smaller than 1.60% for all the 
produced transformers. This is compared with an AARE of 
3.15% in prediction of transformer iron losses, usually 
observed by the conventional grouping process, 

The genetic algorithm based grouping process has been 
implemented through software (GA toolbox) and is currently 
used in the considered industrial environment. Using 
appropriate data acquisition systems, measurements are 
collected and fed to the GA toolbox as well as to a statistical 
processing and graphical visualization toolbox. The 
combination of these two systems provides on-line control 
and optimization of transformer core manufacturing process. 

Fig. 8. Genetic algorithm convergence: total iron losses 
versus the GA cycle. 
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E. CONCLUSIONS 

In this article, automatic learning techniques are used for 
the prediction of iron losses at the transformer production 
phase as well as for the reduction of iron losses of the 
assembled transformers. In particular, three different methods 
are combined decision trees, neural networks and genetic 
algorithms. The goal of decision trees is to investigate the 
more important attributes and their effect on iron losses as 
well as to produce decision d e s  useful for the production of 
transformers. The neural networks are used to provide 
satisfactoty prediction of iron losses for all the environments 
considered. Finally, the genetic algorithms are used in 
combination with neural networks in order to reduce the 
transformer iron losses. Application of the proposed artificial 
intelligence framework to transformer manufacturing industry 
has verified the accurate prediction of iron losses in all the 
examined environments. Moreover, reduction of the 
transformer losses, given the individual cores, is achieved. 
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